الأسي المرجحة الحركة من المتوسط التصفية - matlab


فلتر أسي تصف هذه الصفحة التصفية الأسية، وهي أبسط وأكثر المرشحات شعبية. هذا هو جزء من القسم التصفية التي هي جزء من دليل للكشف عن خطأ والتشخيص .. نظرة عامة، ثابت الوقت، والمعادل التناظرية أبسط فلتر هو مرشح الأسي. لديها معلمة ضبط واحدة فقط (بخلاف الفاصل الزمني للعينة). وهو يتطلب تخزين متغير واحد فقط - الإخراج السابق. وهو مرشح إر (الانحدار الذاتي) - آثار تغيير المدخلات تسوس أضعافا مضاعفة حتى حدود شاشات العرض أو الكمبيوتر الحساب إخفاء ذلك. في مختلف التخصصات، ويشار إلى استخدام هذا الفلتر أيضا باسم 8220 استثنائية التمهيد 8221. في بعض التخصصات مثل تحليل الاستثمار، يسمى الفلتر الأسي 8220 المتوسط ​​المتحرك المتوسط ​​المرجح 8221 (إوما)، أو 8220 فقط المتحرك المتحرك المتوسط ​​8221 (إما). هذا يساء التقليدية أرما 8220moving المتوسط ​​8221 المصطلحات من تحليل سلسلة زمنية، لأنه لا يوجد تاريخ المدخلات التي يتم استخدامها - فقط المدخلات الحالية. وهو يعادل الوقت المنفصل ل 8220 فيرست النظام lag8221 يشيع استخدامها في النمذجة التناظرية من أنظمة التحكم في الوقت المستمر. في الدوائر الكهربائية، مرشح أرسي (مرشح مع المقاوم واحد ومكثف واحد) هو تأخر الدرجة الأولى. عند التشديد على التناظرية الدوائر التناظرية، معلمة ضبط واحد هو 8220time ثابت 8221، وعادة ما تكتب كما في حالة الحروف اليونانية تاو (). في الواقع، والقيم في أوقات عينة منفصلة تتطابق تماما مع الزمن المتساوي المستمر مع نفس الوقت ثابت. وترد العلاقة بين التنفيذ الرقمي والثابت الزمني في المعادلات أدناه. معادلات التصفية الأسية والتهيئة التصفية الأسية هي مزيج مرجح من التقدير السابق (الإخراج) مع أحدث بيانات المدخلات، مع مجموع الأوزان يساوي 1 بحيث الإخراج يطابق الإدخال في حالة مستقرة. بعد ترشيح المرشح الذي تم إدخاله بالفعل: y (k) أي (k-1) (1-a) x (k) حيث x (k) هي المدخلات الأولية في الخطوة الزمنية k (k) هي المخرجات المصفاة عند الخطوة الزمنية كا هو ثابت بين 0 و 1، وعادة ما بين 0.8 و 0.99. (a-1) أو يسمى أحيانا 8220smoothing ثابت 8221. بالنسبة إلى الأنظمة ذات الخطوة الزمنية الثابتة T بين العينات، يتم حساب الثبات 8220a8221 وتخزينه للراحة فقط عندما يحدد مطور التطبيق قيمة جديدة للوقت المطلوب. وبالنسبة إلى الأنظمة التي تحتوي على عينات من البيانات على فترات غير منتظمة، يجب استخدام الدالة الأسية أعلاه مع كل خطوة زمنية، حيث T هو الوقت منذ العينة السابقة. وعادة ما يتم تهيئة خرج المرشح لتتناسب مع المدخلات الأولى. كما يقترب الوقت الثابت 0، يذهب إلى الصفر، لذلك ليس هناك تصفية 8211 الإخراج يساوي المدخلات الجديدة. كما يحصل الوقت ثابت كبير جدا، نهج 1، بحيث يتم تجاهل المدخلات الجديدة تقريبا 8211 تصفية الثقيلة جدا. ويمكن إعادة ترتيب معادلة الفلتر أعلاه إلى المعادلة التالية للمصحح المتنبأ: هذا النموذج يجعل من الواضح أن تقدير المتغير (خرج المرشح) يتنبأ بأنه لم يتغير عن التقدير السابق y (k-1) زائدا مصطلح تصحيح على 8220innovation 8221 غير متوقعة - الفرق بين المدخلات الجديدة x (ك) والتنبؤ ذ (ك -1). هذا النموذج هو أيضا نتيجة اشتقاق المرشح الأسي كحالة خاصة بسيطة لمرشح كالمان. وهو الحل الأمثل لمشكلة تقدير مع مجموعة معينة من الافتراضات. استجابة الخطوة طريقة واحدة لتصور تشغيل المرشح الأسي هو رسم ردها مع مرور الوقت إلى إدخال خطوة. وهذا هو، بدءا من المدخلات والمخرجات مرشح في 0، يتم تغيير قيمة المدخلات فجأة إلى 1. يتم رسم القيم الناتجة أدناه: في المؤامرة المذكورة أعلاه، يتم تقسيم الوقت على الوقت تاو ثابت التصفية حتى تتمكن من التنبؤ بسهولة أكبر نتائج أي فترة زمنية، لأي قيمة من الوقت مرشح الوقت. بعد وقت يساوي ثابت الوقت، يرتفع خرج المرشح إلى 63.21 من قيمته النهائية. بعد وقت يساوي 2 الثوابت الوقت، ترتفع القيمة إلى 86.47 من قيمته النهائية. النواتج بعد مرات تساوي 3،4، والثوابت 5 الوقت هي 95.02، 98.17، و 99.33 من القيمة النهائية، على التوالي. وبما أن المرشح خطي، فهذا يعني أن هذه النسب المئوية يمكن استخدامها لأي حجم من تغير الخطوة، وليس فقط لقيمة 1 المستخدمة هنا. على الرغم من أن الاستجابة خطوة من الناحية النظرية يأخذ وقتا لانهائي، من الناحية العملية، والتفكير في المرشح الأسي كما 98-99 8220done8221 الاستجابة بعد وقت يساوي 4 إلى 5 الثوابت الوقت مرشح. الاختلافات على الفلتر الأسي هناك تباين في المرشح الأسي يسمى الفلتر الأسي 8220nonlineear8221 ويبر، 1980. يهدف إلى تصفية الضوضاء بشكل كبير ضمن سعة 8220typical8221 معينة، ولكن بعد ذلك يستجيب بسرعة أكبر للتغييرات الأكبر حجما. فير فلاتر، مرشحات إير، ومعادلة الفرق الثابت الخطي معادلة متوسطات انتقال السببية (فير) ناقشنا الأنظمة التي تكون فيها كل عينة من المخرجات مجموع مرجح من (بعض من و) عينات من المدخلات. دعونا نأخذ نظام المبلغ المرجح السببية، حيث يعني السببية أن عينة إخراج معين يعتمد فقط على عينة المدخلات الحالية والمدخلات الأخرى في وقت سابق في التسلسل. ولا ينبغي أن تكون النظم الخطية بوجه عام، ولا نظم الاستجابة النبضية المحدودة على وجه الخصوص، سببية. ومع ذلك، السببية هي مريحة لنوع من التحليل الذي كان يجري لاستكشاف قريبا. إذا كنا ترمز المدخلات كقيمة متجه x. والمخرجات كقيم مقابلة للمتجه y. ثم يمكن كتابة مثل هذا النظام حيث حيث يتم تطبيق قيم b كوويتسكوت على عينات الإدخال الحالية والإصدارات السابقة للحصول على عينة الإخراج الحالية. يمكننا أن نفكر في التعبير كمعادلة، مع تساوي معنى علامة يساوي، أو كتدبير إجرائي، مع تساوي علامة معنى التعيين. يتيح كتابة التعبير لكل عينة مخرجات كحلقة ماتلاب من عبارات التعيين، حيث x هو متجه N - طول لعينات الإدخال، و b هو متجه طول M من الأوزان. من أجل التعامل مع الحالة الخاصة في البداية، سوف نقوم بتضمين x في متجه أطول شهات الذي أول عينات M-1 هي صفر. سنكتب التجمیع المرجح لكل ذ (ن) كمنتج داخلي، وسوف نقوم ببعض التلاعب في المدخلات (مثل عكس ب) لھذه الغایة. هذا النوع من النظام غالبا ما يسمى مرشح المتوسط ​​المتحرك، لأسباب واضحة. ومن مناقشاتنا السابقة، ينبغي أن يكون واضحا أن مثل هذا النظام خطي ومتحول. وبطبيعة الحال، سيكون أسرع بكثير لاستخدام ماتلاب كونفولوتيون وظيفة كونف () بدلا من مافيلت لدينا (). بدلا من النظر في عينات M-1 الأولى من المدخلات لتكون صفر، يمكن أن نعتبرها لتكون نفس العينات M-1 الماضي. هذا هو نفس معاملة المدخلات بشكل دوري. حسنا استخدام كمافيلت () كاسم وظيفة، وتعديل صغير من مافيلت في وقت سابق () وظيفة. عند تحديد الاستجابة النبضية لنظام ما، لا يوجد عادة فرق بين هذين، لأن جميع العينات غير الأولية من المدخلات هي صفر: بما أن نظام من هذا النوع هو الخطية والتحول ثابت، ونحن نعلم أن تأثيره على أي الجيبية سوف تكون فقط على نطاق وتحويله. هنا من المهم أن نستخدم النسخة الدائرية يتم تحويل النسخة المحكومة بشكل دائري وتحجيم قليلا، في حين أن النسخة مع الالتفاف العادي هو مشوهة في البداية. دعونا نرى ما هو بالضبط التحجيم والتحول هو باستخدام ففت: كل من المدخلات والمخرجات لديها السعة فقط في الترددات 1 و -1، وهو كما ينبغي أن يكون، نظرا لأن المدخلات كان الجيبية وكان النظام الخطية. وتكون قيم الخرج أكبر بنسبة 10.62518 1.3281. هذا هو كسب النظام. ماذا عن المرحلة نحن بحاجة فقط للنظر حيث السعة غير الصفر: المدخلات لديها مرحلة pi2، كما طلبنا. تحولت مرحلة الإخراج عن طريق 1.0594 إضافية (مع علامة المعاكس للتردد السلبي)، أو حوالي 16 من دورة إلى اليمين، كما يمكننا أن نرى على الرسم البياني. الآن دعونا محاولة الجيبية مع نفس التردد (1)، ولكن بدلا من السعة 1 و pi2 المرحلة، ويحاول محاولة السعة 1.5 و المرحلة 0. ونحن نعلم أن التردد فقط 1 و -1 سيكون لها سعة غير الصفر، لذلك دعونا مجرد نظرة عندهم: مرة أخرى نسبة الاتساع (15.937712.0000) هي 1.3281 - أما بالنسبة للمرحلة فإنه تحول مرة أخرى من قبل 1.0594 إذا كانت هذه الأمثلة نموذجية، يمكننا أن نتوقع تأثير نظامنا (استجابة دفعة .1 .2 .3 4. 5) على أي جيبية مع التردد 1 - سيتم زيادة السعة بعامل 1.3281 وسوف تتحول المرحلة (تردد إيجابي) 1.0594. يمكن أن نذهب إلى حساب تأثير هذا النظام على الجيوب الأنفية من الترددات الأخرى بنفس الطرق. ولكن هناك طريقة أبسط بكثير، واحدة التي تحدد النقطة العامة. وبما أن التفاف (دائري) في المجال الزمني يعني التكاثر في مجال الترددات، من ذلك يعني أن دفت للاستجابة النبضية هي نسبة دفت للإخراج إلى دفت للإدخال. في هذه العلاقة معاملات دفت هي أرقام معقدة. منذ عبس (c1c2) عبس (c1) عبس (c2) لجميع الأعداد المركبة c1، c2، تخبرنا هذه المعادلة أن طيف الاتساع للاستجابة النبضية سيكون دائما نسبة طيف الاتساع للناتج إلى دخل المدخل . وفي حالة طيف الطور، تكون الزاوية (c1c2) الزاوية (c1) - الزاوية (c2) لكل c1، c2 (مع شرط أن تكون المراحل المختلفة ب n2pi متساوية). ولذلك فإن الطيف الطوري للاستجابة النبضية سيكون دائما الفرق بين أطياف الطور للإخراج والمدخل (مع أي تصحيحات بواسطة 2pi مطلوبة للحفاظ على النتيجة بين - pi و بي). يمكننا أن نرى آثار المرحلة أكثر وضوحا إذا كنا إلغاء التفاف تمثيل المرحلة، أي إذا أضفنا مضاعفات مختلفة من 2pi حسب الحاجة لتقليل القفزات التي تنتجها الطبيعة الدورية للزاوية () وظيفة. وعلى الرغم من أن الاتساع والطور يستخدمان عادة لعرض رسومية بل وجدولية، حيث إنها طريقة بديهية للتفكير في آثار النظام على مختلف مكونات تردد مدخلاته، فإن معاملات فورييه المعقدة هي أكثر فائدة من الناحية الجبرية لأنها تسمح تعبير بسيط عن العلاقة النهج العام الذي شاهدناه للتو سيعمل مع مرشحات تعسفية من نوع رسم، حيث كل عينة الإخراج هو مجموع مرجح من بعض مجموعة من عينات المدخلات. وكما ذكر سابقا، غالبا ما تسمى هذه المرشحات مرشحات الاستجابة النبضية المحدودة، لأن الاستجابة النبضية ذات حجم محدود، أو أحيانا تتحرك المرشحات المتوسطة. ويمكننا تحديد خصائص استجابة التردد لمثل هذا المرشاح من الاتحاد الفرنسي للتنس مقابل استجابته النبضية، ويمكننا أيضا تصميم مرشحات جديدة بالخصائص المطلوبة بواسطة إفت من مواصفات استجابة التردد. مرشحات الانحدار الذاتي (إير) سيكون هناك القليل من النقاط في وجود أسماء لمرشحات الأشعة تحت الحمراء ما لم يكن هناك نوع آخر (أنواع) لتمييزها عن، وبالتالي فإن أولئك الذين درسوا البراغماتية لن يفاجأوا لمعرفة أن هناك بالفعل نوع رئيسي آخر من الخطي مرشح الوقت ثابتة. وتسمى هذه المرشحات أحيانا عودية لأن قيمة المخرجات السابقة (فضلا عن المدخلات السابقة) أهمية، على الرغم من أن الخوارزميات مكتوبة عموما باستخدام البنى التكرارية. وتسمى أيضا مرشحات الاستجابة اللانهائية (إير) اللانهائي، لأن بشكل عام استجابتها للدافع يمضي إلى الأبد. كما أنها تسمى أحيانا مرشحات الانحدار الذاتي، لأن المعاملات يمكن اعتبارها نتيجة للقيام الانحدار الخطي للتعبير عن قيم إشارة كدالة لقيم الإشارة السابقة. ويمكن رؤية علاقة مرشحات الأشعة تحت الحمراء (إير) و إير (إير) بوضوح في معادلة فرق ثابت للمعامل الثابت، أي تحديد مجموع مرجح للنواتج يساوي مجموع مرجح للمدخلات. هذا هو مثل المعادلة التي أعطيناها سابقا لمرشح معلومات الأشعة السالبة، إلا أنه بالإضافة إلى الحجم المرجح للمدخلات، لدينا أيضا مجموع مرجح من النواتج. إذا كنا نريد أن نفكر في هذا كإجراء لتوليد عينات الإخراج، ونحن بحاجة إلى إعادة ترتيب المعادلة للحصول على تعبير عن عينة الانتاج الحالي ذ (ن)، اعتماد الاتفاقية أن (1) 1 (على سبيل المثال عن طريق تحجيم البعض كما و بس)، يمكننا التخلص من المصطلح 1a (1): y (n) b (1) x (n) b (2) x (n-1). b (nb1) x (n-نب) - a (2) y (n-1) -. - a (Na1) y (n-نا) إذا كان كل (n) بخلاف (1) صفرا، فإن هذا يقلل من صديقنا القديم مرشح فير للسببية. هذه هي الحالة العامة لمرشح لتي (سببية) لتي، ويتم تنفيذه بواسطة مرشح وظيفة ماتلاب. يتيح النظر في الحالة التي تكون فيها معاملات b بخلاف b (1) صفرا (بدلا من حالة فير، حيث تكون a (n) صفرا): وفي هذه الحالة، تحسب عينة الإخراج الحالية y (n) (n-1)، y (n-2)، إلخ. للحصول على فكرة عما يحدث مع هذه الفلاتر، يتيح البدء بالحالة حيث: وهذا هو، وعينة الانتاج الحالي هو مجموع عينة المدخلات الحالية ونصف عينة الانتاج السابقة. حسنا اتخاذ دفعة الدافع من خلال بضع خطوات الوقت، واحدة في وقت واحد. يجب أن يكون واضحا في هذه المرحلة أنه يمكننا بسهولة كتابة تعبير عن قيمة عينة الناتج نث: هو فقط (إذا ماتلاب عد من 0، وهذا سيكون ببساطة .5n). وبما أن ما نقوم بحسابه هو الاستجابة النبضية للنظام، فقد أثبتنا مثالا على أن الاستجابة النبضية يمكن أن تحتوي بالفعل على عدد لا نهائي من العينات غير الصفرية. لتنفيذ هذا التصفية الأولى من الدرجة الأولى في ماتلاب، يمكننا استخدام الفلتر. سوف تبدو هذه الدعوة كما يلي: والنتيجة هي: هل هذا العمل لا يزال حقا الخطية يمكننا أن ننظر في هذا تجريبيا: لنهج أكثر عمومية، والنظر في قيمة عينة الإخراج ذ (ن). من خلال استبدال المتعاقبة يمكننا أن نكتب هذا كما هو تماما مثل صديقنا القديم شكل جمع الالتفاف من فلتر معلومات الطيران، مع الاستجابة النبضية التي يقدمها التعبير .5k. وطول الاستجابة النبضية لانهائية. وبالتالي، فإن نفس الحجج التي استخدمناها لإظهار أن فلاتر معلومات النطاق (فير) خطي ستطبق الآن هنا. حتى الآن قد يبدو هذا مثل الكثير من الضجة حول ليس كثيرا. ما هو هذا الخط كله من التحقيق جيدة للرد على هذا السؤال على مراحل، بدءا من مثال. انها ليست مفاجأة كبيرة أننا يمكن حساب عينة أضعية من قبل الضرب العودية. دعونا ننظر إلى مرشح العودية أن يفعل شيئا أقل وضوحا. هذه المرة جعله جيدا مرشح من الدرجة الثانية، بحيث الدعوة لتصفية سيكون من شكل يتيح تعيين معامل الانتاج الثاني a2 إلى -2cos (2pi40)، والناتج الثالث معامل a3 إلى 1، والنظر في دفعة استجابة. غير مفيد جدا كمرشح، في الواقع، ولكنه يولد موجة جيبية عينات (من دفعة) مع ثلاثة مضاعفة يضيف لكل عينة من أجل فهم كيف ولماذا يفعل ذلك، وكيف يمكن تصميم المرشحات العودية وتحليلها في والحالة أكثر عمومية، ونحن بحاجة إلى خطوة إلى الوراء ونلقي نظرة على بعض خصائص أخرى من الأعداد المركبة، على الطريق إلى فهم z تحويل. متوسط ​​متحرك مرجح بشكل استثنائي يمكنك التفكير في قائمة ساعتك كما المواضيع التي قمت بوضع إشارة مرجعية. يمكنك إضافة العلامات والمؤلفين والخيوط، وحتى نتائج البحث إلى قائمة المراقبة الخاصة بك. وبهذه الطريقة يمكنك بسهولة تتبع المواضيع التي كنت مهتما. لعرض قائمة المراقبة الخاصة بك، انقر على الرابط كوتومي نوسريدركوت. لإضافة عناصر إلى قائمة المراقبة، انقر على علامة اقتباس لمشاهدة رابط ليستوت في أسفل أي صفحة. كيف أضيف عنصر إلى قائمة المراقبة الخاصة بي لإضافة معايير البحث إلى قائمة المشاهدة، ابحث عن العبارة المطلوبة في مربع البحث. انقر على كوادد هذا البحث إلى رابط ساعتي ليستكوت على صفحة نتائج البحث. يمكنك أيضا إضافة علامة إلى قائمة المشاهدة من خلال البحث عن العلامة باستخدام كوتاغ التوجيه: تاغناميكوت حيث تغنام هو اسم العلامة التي ترغب في مشاهدتها. لإضافة مؤلف إلى قائمة المراقبة، انتقل إلى صفحة الملف الشخصي للمؤلفين وانقر على رابط هذا المؤلف إلى رابط ساعتي ليستكوت أعلى الصفحة. يمكنك أيضا إضافة مؤلف إلى قائمة المراقبة الخاصة بك عن طريق الذهاب إلى مؤشر ترابط الذي نشره المؤلف والنقر على كوتاد هذا المؤلف إلى قائمتي ليستكوت رابط. سيتم إعلامك كلما قام المؤلف بعمل مشاركة. لإضافة سلسلة محادثات إلى قائمة المشاهدة، انتقل إلى صفحة سلسلة المحادثات وانقر على الرابط "إضافة هذا الموضوع إلى رابط الساعة" أعلى الصفحة. حول مجموعات الأخبار، أخبار، و ماتلاب الوسطى ما هي مجموعات الأخبار مجموعات الأخبار هي منتدى عالمي مفتوح للجميع. وتستخدم مجموعات الأخبار لمناقشة مجموعة واسعة من المواضيع، وجعل الإعلانات، والملفات التجارية. المناقشات مترابطة، أو مجمعة بطريقة تسمح لك بقراءة رسالة نشرت وجميع ردودها بترتيب زمني. وهذا يجعل من السهل لمتابعة موضوع المحادثة، ونرى ما كان يقال بالفعل قبل نشر الرد الخاص بك أو جعل نشر جديد. يتم توزيع محتوى مجموعة الأخبار بواسطة خوادم تستضيفها منظمات مختلفة على الإنترنت. يتم تبادل الرسائل وإدارتها باستخدام بروتوكولات مفتوحة القياسية. لا يوجد كيان واحد لدكوونسردكو مجموعات الأخبار. هناك الآلاف من مجموعات الأخبار، كل يتناول موضوع واحد أو مجال الاهتمام. و ماتلاب الوسطى نوسريدر المشاركات ويعرض الرسائل في comp. soft-sys. matlab نيوسغروب. كيف يمكنني القراءة أو النشر إلى مجموعات الأخبار يمكنك استخدام قارئ الأخبار المتكامل في موقع ماتلاب المركزي لقراءة الرسائل ونشرها في مجموعة الأخبار هذه. يتم استضافتها ماتلاب الوسطى من قبل ماثوركس. الرسائل التي يتم نشرها من خلال ماتلاب سينترال نيوسريدر ينظر إليها الجميع باستخدام مجموعات الأخبار، بغض النظر عن كيفية وصولهم إلى مجموعات الأخبار. هناك العديد من المزايا لاستخدام ماتلاب الوسطى. حساب واحد يرتبط حساب ماتلاب المركزي بحساب ماثووركس لسهولة الوصول إليه. استخدام عنوان البريد الإلكتروني من اختيارك يسمح لك ماتلاب سينترال نيوسريدر بتحديد عنوان بريد إلكتروني بديل كعنوان نشر، وتجنب الفوضى في صندوق البريد الأساسي والحد من الرسائل غير المرغوب فيها. التحكم في الرسائل غير المرغوب فيها يتم تصفية معظم الرسائل الإخبارية غير المرغوب فيها من قبل ماتلاب سنترال نيوسريدر. وضع العلامات يمكن وضع علامة على الرسائل باستخدام تصنيف ملائم من قبل أي مستخدم مسجل الدخول. يمكن استخدام العلامات ككلمات رئيسية للعثور على ملفات معينة محل اهتمام، أو كوسيلة لتصنيف النشرات المرجعية. يمكنك اختيار السماح للآخرين بعرض علاماتك، ويمكنك عرض أو البحث عن أوسرسكو تاغس بالإضافة إلى علامات المنتدى بشكل عام. يوفر وضع العلامات وسيلة لرؤية كل من الاتجاهات الكبيرة والأفكار الصغيرة، أكثر غموضا والتطبيقات. قوائم المراقبة يتيح لك إعداد قوائم المراقبة إمكانية إعلامك بالتحديثات التي تم إجراؤها على المشاركات التي تم تحديدها بواسطة المؤلف أو مؤشر الترابط أو أي متغير بحث. يمكن إرسال إشعارات قائمة المراقبة عن طريق البريد الإلكتروني (ملخص يومي أو فوري)، يتم عرضها في ماي نيوسريدر، أو إرسالها عبر خلاصة رسس. طرق أخرى للوصول إلى مجموعات الأخبار استخدام قارئ الأخبار من خلال مدرستك أو صاحب العمل أو مزود خدمة الإنترنت دفع للحصول على مجموعة الأخبار من مزود تجاري استخدام مجموعات غوغل Mathforum. org يوفر قارئ الأخبار مع الوصول إلى comp. soft sys. matlab أخبار مجموعة تشغيل الخاصة بك الخادم. للحصول على تعليمات نموذجية، انظر: slyckng. phppage2 حدد بلدك الوثائق يوضح هذا المثال كيفية استخدام فلاتر المتوسط ​​المتحرك وإعادة عزل لعزل تأثير المكونات الدورية من الوقت من اليوم على قراءات درجة الحرارة كل ساعة، وكذلك إزالة الضوضاء خط غير المرغوب فيها من فتح - لوب قياس الجهد. ويبين المثال أيضا كيفية تسهيل مستويات إشارة الساعة مع الحفاظ على الحواف باستخدام مرشح متوسط. يوضح المثال أيضا كيفية استخدام فلتر هامبيل لإزالة القيم المتطرفة الكبيرة. الدافع التمويه هو كيف نكتشف الأنماط الهامة في بياناتنا في حين ترك الأشياء التي هي غير مهمة (أي الضوضاء). نحن نستخدم تصفية لتنفيذ هذا التمهيد. هدف التمهيد هو إحداث تغييرات بطيئة في القيمة بحيث أسهل لرؤية الاتجاهات في بياناتنا. في بعض الأحيان عند فحص بيانات الإدخال قد ترغب في تسهيل البيانات من أجل رؤية اتجاه في الإشارة. في مثالنا لدينا مجموعة من قراءات درجة الحرارة في مئوية أخذت كل ساعة في مطار لوغان لكامل شهر يناير 2011. لاحظ أننا يمكن أن نرى بصريا تأثير أن الوقت من اليوم لديه على قراءات درجة الحرارة. إذا كنت مهتما فقط في التغير في درجة الحرارة اليومية على مدار الشهر، وتقلبات ساعة تسهم فقط الضوضاء، والتي يمكن أن تجعل من الصعب التعرف على الاختلافات اليومية. ولإزالة تأثير الوقت من اليوم، نود الآن تسهيل بياناتنا باستخدام فلتر متوسط ​​متحرك. مرشاح متوسط ​​متحرك في أبسط أشكاله، فإن مرشاح المتوسط ​​المتحرك للطول N يأخذ متوسط ​​كل N عينة متعاقبة من شكل الموجة. ولتطبيق مرشح متوسط ​​متحرك على كل نقطة بيانات، نقوم ببناء معاملاتنا في عامل التصفية بحيث تكون كل نقطة مرجحة على قدم المساواة وتساهم ب 124 في المتوسط ​​الكلي. وهذا يعطينا متوسط ​​درجة الحرارة على مدى كل 24 ساعة. فيلتر ديلاي لاحظ أن الإخراج المصفى يتأخر بنحو اثني عشر ساعة. ويرجع ذلك إلى حقيقة أن عامل تصفية المتوسط ​​المتحرك له تأخير. أي مرشح متماثل طول N سوف يكون لها تأخير من (N-1) 2 عينات. يمكننا حساب هذا التأخير يدويا. استخراج الفروق المتوسطة بدلا من ذلك، يمكننا أيضا استخدام فلتر المتوسط ​​المتحرك للحصول على تقدير أفضل لكيفية تأثير الوقت من اليوم على درجة الحرارة الكلية. للقيام بذلك، أولا، طرح البيانات ممهدة من قياسات درجة الحرارة ساعة. بعد ذلك، صنف البيانات المختلفة إلى أيام واحصل على المتوسط ​​خلال كل 31 يوما في الشهر. استخراج الذروة المغلف في بعض الأحيان نود أيضا أن يكون لها تقدير متفاوت بسلاسة لكيفية ارتفاعات وانخفاض مستويات الحرارة لدينا إشارة تغيير يوميا. للقيام بذلك يمكننا استخدام وظيفة المغلف لربط أعلى مستوياته القصوى والهبوط المكتشفة على مجموعة فرعية من فترة 24 ساعة. في هذا المثال، علينا أن نضمن أن هناك ما لا يقل عن 16 ساعة بين كل ارتفاع الشديد والمتطرف الشديد. ويمكننا أيضا أن نحصل على فكرة عن الكيفية التي تتجه بها الرتفاعات والهبوط من خلال أخذ المتوسط ​​بين النقيضين. عوامل التصفية المتوسطة المتحركة المرجحة أنواع أخرى من المرشحات المتوسطة المتحركة لا تزن كل عينة بالتساوي. مرشح مشترك آخر يتبع توسع الحدين من (12،12) n هذا النوع من المرشح يقترب من منحنى العادي للقيم الكبيرة من n. ومن المفيد لتصفية الضوضاء عالية التردد ل n الصغيرة. للعثور على معاملات للمرشح ذي الحدين، 1212 12 مع نفسه ومن ثم تكرارا تزامن الإخراج مع 12 12 عدد محدد من المرات. في هذا المثال، استخدم خمس تكرارات إجمالية. مرشح آخر يشبه إلى حد ما مرشح توسع غاوس هو مرشح المتوسط ​​المتحرك الأسي. هذا النوع من المرشح المتوسط ​​المتحرك المرجح يسهل بناؤه ولا يتطلب حجم نافذة كبير. يمكنك ضبط عامل تصفية متوسط ​​متحرك أضعافا مضاعفة بواسطة معلمة ألفا بين الصفر وواحد. وهناك قيمة أعلى من ألفا يكون أقل تمهيد. التكبير في القراءات ليوم واحد. اختر بلدك

Comments